Campuses

As France's leading biocluster, Genopole is an incubator for cutting-edge projects in biotechnology. Located in the city of Évry, just south of Paris, Genopole provides a unique environment for scientists and entrepreneurs seeking to advance research and innovation.

Discover >

Advantages

Genopole accompanies researchers, postdocs and start-up entrepreneurs through all the phases of their projects to ensure the best possible conditions for business development.

Discover >

Genopole’s citizens

Every day, at Genopole, researchers, entrepreneurs and students cross paths, share ideas and unite forces in a veritable melting pot for innovation.

Discover >

Highlights

Giving wings to research and empowering employment in our community are cornerstones of Genopole's mission. Catch up on recent scientific advances, the accomplishments of our biotech actors and the events that enliven the biocluster.

Discover >

Innovate with us

Discover >
Innovation

A nanopore to identify amino acids


A team from the Laboratory for Analysis and Modeling in Biology and the Environment (Lambe – University of Évry/University of Cergy-Pontoise/CNRS) used a natural aerolysin nanopore to successfully identify 13 of the 20 amino acids that make up proteins.
cellular membrane cellular membrane

Aerolysin is a toxin produced naturally by Pseudomonas aeruginosa. It forms a nanopore, i.e., an opening measuring only a few nanometers in diameter, in cells during infection. That aerolysin nanopore can however also be used as an ultra-sensitive, selective and specific sensor in a number of biotech settings (Cressiot et al., 2019, ACS Sensors). In their work, the Lambe team showed that under controlled experimental conditions, the properties of aerolysin nanopores could be harnessed to identify 13 of the 20 natural amino acids.

A specific electronic signal during nanopore passage

To achieve that feat, the team associated each amino acid with a positively-charged peptide. Under the influence of an electric field, the amino acid with its peptide enters the nanopore where it is temporarily confined. That confinement blocks the electric current, with each amino acid generating a specific electrical signature. The nanopore is even sensitive enough to detect post-translational modifications, that is, chemical changes that amino acids undergo after protein synthesis. Those modifications are important because they regulate the cellular activities of proteins.

Why characterize the proteome?

The work by the Lambe team is a first step toward the sequencing of proteins, which ensure cellular function.

Sequencing the proteome of a cell or a biological fluid is a major issue in healthcare. In the same way that the genome designates the total genetic information of an organism, the proteome provides the total proteinaceous information of a cell, and the chemical modifications those proteins undergo. Thus, the proteome is the organism’s functional motor.

In contrast to the genome, the proteome varies with the particular functions of a given cell. Importantly, it also bears the marks of cellular dysfunction, notably in disease. For that reason, finely characterizing the proteome may make it possible to diagnose serious diseases such as cancers earlier in their course, prevent them from recurring or develop personalized treatments for them.

The team has its sights set on improving instrumentation and engineering the nanopores to enable the identification of the seven remaining amino acids. Once accomplished, the team will have opened a potential path toward protein sequencing via aerolysin nanopores for unique molecules.

This recent work, published in Nature Biotechnology (2020) follows upon a first study published in Nature Communications (2018) on the detection of homopeptides and the determination of their sequence size using the aerolysin nanopore. The Lambe project is carried out in partnership with Lariboisière Hospital, the start-up DreamPore, the University of Illinois and the University of Freiburg.

  • References

    H Ouldali Sarthak K, Ensslen T, Piguet F, Manivet P, Pelta J, Behrends JC, Aksimentiev A, Oukhaled A. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat Biotechnol. 2020 Feb ;38(2):176-181.
    doi.org/10.1038/s41587-019-0345-2


    F. Piguet, H. Ouldali, M. Pastoriza-Gallego, P. Manivet, J. Pelta and A. Oukhaled (2018). Identication of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore, Nat. Com. 9:966.


    B. Cressiot, Ouldali H, Pastoriza-Gallego M, Bacri L, Van der Goot FG, Pelta J. Aerolysin, a Powerful Protein Sensor for Fundamental Studies and Development of Upcoming Applications. ACS Sens. 2019 Mar 22 ;4(3):530-548.

Contact

University of Evry

Juan Pelta
juan.pelta@univ-evry.fr

CY Cergy Paris University

Abdelghani Oukhaled
abdelghani.oukhaled@u-cergy.fr

Article posted on 20 February 2020

Share
Highlights

The latest news


Laina Freyer directrice scientifique, Felome

Felome Launches the Commercialization of Genetic Analyses for Companion Cats

Felome will begin the commercialization of a service offering genetic analyses for companion cats, to reveal their predispositions to over 50 diseases, identify their main physical traits, and their similarities with 14 types of breeds.

Discover
l'équipe iGEM 2023 Evry Paris-Saclay - Médaille d'or et p

A prize and gold for the 2023 Évry Paris-Saclay iGEM team

The international synthetic biology competition iGEM celebrated its 20th anniversary. From across the globe, the event drew more than 7,000 students in 400 teams from 66 countries. Genopole was there, among other actors in synthetic biology, to present the biocluster's advantages at its stand, and support the 17 students of the Évry Paris-Saclay team and their outstanding project, OptoGenEYEsis.

Discover
Ibisc - Genopole's Laboratory

IBISC – Structure prediction for RNA complexes

passes a milestone in structure prediction for RNA complexes, key players in cell biology.

Discover
IBISC: A first predictive tool for the emerging field of bifunctional RNA

IBISC: A first predictive tool for the emerging field of bifunctional RNA

The IBISC laboratory has developed IRSOM2, an unprecedented bioinformatics tool for the prediction of bifunctional RNA, a relatively recently discovered class of RNA showing both an ability to code for proteins and an ability to perform biological roles.

Discover
Integrating informatics, structural biology and in vivo exploration for the discovery of new medicines

SABNP & Synsight: discovery of new medicines

SABNP and Synsight have validated an integrated, drug discovery approach uniting informatics, structural biology and in vivo exploration.

Discover
Alexis Biton and Paul Carouen - Genopole - visiting the Research Triangle Park (USA) accompanied by 3 Genopole's companies

Genopole strengthens its ties with the Research Triangle Park

From Monday March 20 to Thursday March 24, Genopole's Partnership & Business Development team visited the Research Triangle Park biopark in North Carolina to strengthen scientific and industrial collaborations.

Discover
Lambe - Genopole's laboratory

Lambe: Detecting coagulation biomarkers with a natural nanopore

The Lambe laboratory showed proof of concept for a coagulation biomarker detection technology based on a natural nanopore.

Discover
Andrew Tolonen's team within the unit of Genomics Metabolics (Genoscope - CEA)

Genoscope: Biomanufacturing with bacteria

A team led by Andrew Tolonen has developed a method to optimize the genetic engineering of Clostridium genus bacteria for biotech applications

Discover
l’équipe « Dystrophies musculaires progressives » du laboratoire Généthon

Shining light on a key mechanism of Duchenne muscular dystrophy

A Genethon team has provided new insights on a complex genetic mechanism involved in mitochondrial dysfunction in Duchenne muscular dystrophy.

Discover
A trio of genome sites associated with arterial hypertension

A trio of genome sites associated with arterial hypertension

Researchers from the CNRGH and PARCC have identified three loci associated with an increased risk of developing primary hyperaldosteronism, a leading cause of arterial hypertension.

Discover
Genoscope - CNS - Genopole's laboratory

The story of the domestic donkey told by its genome

Genoscope participated in the sequencing of the DNA of 250 donkeys in a study revealing the domestication of this species highly contributive to human activities to this day.

Discover
Galaxy-SynBioCAD: accelerating the arrival of green chemistry

Galaxy-SynBioCAD: accelerating the arrival of green chemistry

Conceived by the Genomics Metabolics Unit, Galaxy-SynBioCAD accelerates biological design and engineering for the production of next generation chemical compounds.

Discover
Equipe Sysfate de l'UMR 8030 - projet T-Fitness

T-FITNESS: Toward empowering CAR-T therapies for solid tumors

The Genopole team SysFate is participating in the international project T-FITNESS. The project, selected by the European Innovation Council, aims to resolve the difficulty of T-cell exhaustion in CAR-T therapies for solid tumors.

Discover
Ynsect & Genoscope : Vers la sélection génomique des insectes d’élevage

Toward the genomic selection of farmed insects

France is historically a land of livestock farming. Cows for meat or milk, sheep, pigs, fowl of all sorts; France rears them all. And insects! With its genomic selection project for Tenebrio molitor beetles, the Genopole company Ÿnsect and its biocluster partner, the sequencing center Genoscope, are making France a pioneer in insect farming.

Discover
Couverture de la revue Cell Genomics - Le plancton

A feat in the study of planktonic life

A Genoscope research team was part of a pioneering study in environmental genomics. The researchers were able to at least partially reconstitute the genomes of close to 700 eukaryote species.

Discover
Logos Istem & Généthon

A two-drug combination to treat limb-girdle muscular dystrophies and cystic fibrosis

The I-Stem and Genethon laboratories have identified a promising drug combination in the setting of three genetic diseases sharing similar molecular mechanisms.

Discover
IBISC - IA qui diagnostique et explique grâce à un réseau de neurones

An artificial intelligence to diagnose and explain

The IBISC laboratory has conceived an architecturally-innovative neural network able to provide not only a diagnostic prediction but also a biological explanation.

Discover
Christophe Lanneau - Research & Platforms Department Director

News from the human genome

The 1 April edition of Science announced the publication of the human genome with the previously-missing 8% now added to it. Comments from the Genopole Director of Research.

Discover
CNRGH - Consequences of phthalate exposure during pregnancy

Consequences of phthalate exposure during pregnancy

Jörg Tost and his team of the National Center of Human Genomics Research (CNRGH; CEA) were part of a large collaborative study aimed at determining the genome-wide correlation between phthalate exposure during pregnancy and methylation of placental DNA.

Discover
INtegrare / Généthon - Efficacité à long terme de la thérapie génique d’un déficit immunitaire

Long-term efficacy for an immunodeficiency gene therapy

A gene therapy conceived by Genethon has been shown to confer long-term efficacy against Wiskott-Aldrich syndrome, an immune deficiency disorder.

Discover
View all >
With the support from
Région île de France