Campuses

As France's leading biocluster, Genopole is an incubator for cutting-edge projects in biotechnology. Located in the city of Évry, just south of Paris, Genopole provides a unique environment for scientists and entrepreneurs seeking to advance research and innovation.

Discover >

Advantages

Genopole accompanies researchers, postdocs and start-up entrepreneurs through all the phases of their projects to ensure the best possible conditions for business development.

Discover >

Genopole’s citizens

Every day, at Genopole, researchers, entrepreneurs and students cross paths, share ideas and unite forces in a veritable melting pot for innovation.

Discover >

Highlights

Giving wings to research and empowering employment in our community are cornerstones of Genopole's mission. Catch up on recent scientific advances, the accomplishments of our biotech actors and the events that enliven the biocluster.

Discover >

Innovate with us

Discover >
Highlights

Long-term efficacy for an immunodeficiency gene therapy


The Genethon research unit Integrare and its French and British partners have demonstrated the long-term efficacy of a gene therapy for Wiskott-Aldrich syndrome, an immune deficiency disorder. The clinical trial, published in Nature Medicine, monitored eight patients over an average of seven years.
Published in Nature Medecine 2022 >

Work done by Anne Galy’s Integrare (Integrated genetic approaches and new therapies for rare diseases; Inserm, University of Évry-Paris Saclay, Genethon) team has resulted in an ex vivo* gene therapy for the treatment of Wiskott-Aldrich syndrome, a rare immune deficiency. Genethon conceived the vector, produced the clinical batches and designed an international clinical trial launched in 2010 at the Necker Children’s Hospital in Paris and at two hospitals in London, England.

Wiskott-Aldrich syndrome (WAS) is a rare genetic disease that severely alters the immune system of children. It causes bleeding, serious recurrent infections, severe eczema, autoimmune reactions and even cancers. The syndrome is caused by a mutation in the WAS gene, resulting in alterations to leukocyte function. Gene therapies thus hold the greatest promise for efficacious treatments. Integrare developed a lentiviral vector able to bring a functional WAS gene to the blood’s stem cells.

Earlier results published in 2015 showed a reestablishment of immune system function and improved clinical states in the first patients to have received the treatment. The recent article published 24 January 2022 in Nature Medicine reports the conclusive follow-up results from a long-term safety and efficacy trial. For it, eight patients aged 8 months to 30 years at the time of treatment were monitored over four to nine years.

Resolution of the main symptoms of the disease, such as recurrent severe infections or eczema, was observed for all of the patients. T lymphocyte function, which is vital for immune response, was completely restored. Bleeding and signs of auto-immune dysfunction also diminished significantly in all the patients and platelet counts had returned to normal in three of them. These positive effects were observed in the adult patients as well, confirming treatment efficacy in that population.

Furthermore, the authors observed no adverse effects in their study. And finally, using DNA sequencing, the team was able to determine the integration sites of the “gene-drug.” The results of this long-term follow-up study demonstrate the interest of lentiviral vectors for the safe and stable introduction of corrective genes.

Reference

Long-term safety and efficacy of lentiviral hematopoietic stem/progenitor cell gene therapy for Wiskott–Aldrich syndrome.

  • * Ex vivo gene therapy

    involves taking cells from a patient, cultivating them in vitro, transforming them genetically then reinjecting them back into the patient. This approach has the major advantage of reducing the risk of immune reactions because the viral vector is kept out of the organism and the cells are those of the patient.
    Also, ex vivo gene therapy can correct stem cells. Because these latter are able to multiply indefinitely, the therapeutic effect can remain active over time.
    Hematopoietic stem and progenitor cells are the starting points for all of the various cells in the blood (including those involved in the immune system) and compatible with ex vivo gene therapy techniques. They can be collected from the bone marrow and reinjected thereafter intravenously. Genetically modified progenitor cells can, once reintroduced into the organism, lead to the constitution of a corrected hematopoietic cell line.

Article posted on 18 February 2022

Share
Highlights

News


Ynsect & Genoscope : Vers la sélection génomique des insectes d’élevage

Toward the genomic selection of farmed insects

France is historically a land of livestock farming. Cows for meat or milk, sheep, pigs, fowl of all sorts; France rears them all. And insects! With its genomic selection project for Tenebrio molitor beetles, the Genopole company Ÿnsect and its biocluster partner, the sequencing center Genoscope, are making France a pioneer in insect farming.

Discover
Couverture de la revue Cell Genomics - Le plancton

A feat in the study of planktonic life

A Genoscope research team was part of a pioneering study in environmental genomics. The researchers were able to at least partially reconstitute the genomes of close to 700 eukaryote species.

Discover
Logos Istem & Généthon

A two-drug combination to treat limb-girdle muscular dystrophies and cystic fibrosis

The I-Stem and Genethon laboratories have identified a promising drug combination in the setting of three genetic diseases sharing similar molecular mechanisms.

Discover
IBISC - IA qui diagnostique et explique grâce à un réseau de neurones

An artificial intelligence to diagnose and explain

The IBISC laboratory has conceived an architecturally-innovative neural network able to provide not only a diagnostic prediction but also a biological explanation.

Discover
Christophe Lanneau - Research & Platforms Department Director

News from the human genome

The 1 April edition of Science announced the publication of the human genome with the previously-missing 8% now added to it. Comments from the Genopole Director of Research.

Discover
CNRGH - Consequences of phthalate exposure during pregnancy

Consequences of phthalate exposure during pregnancy

Jörg Tost and his team of the National Center of Human Genomics Research (CNRGH; CEA) were part of a large collaborative study aimed at determining the genome-wide correlation between phthalate exposure during pregnancy and methylation of placental DNA.

Discover
I-Stem, IPSEN & LMN recreate the human muscle-nerve system

A cellular model to recreate the human muscle-nerve system

Researchers from I-Stem, IPSEN and LMN have conceived a cellular muscle-nerve model to test the therapeutic potential of botulinum toxins in vitro.

Discover
Genoscope - CNS - Genopole's laboratory

Filling the gaps in the banana’s genome

Des chercheurs de Genoscope en collaboration avec une équipe du Cirad sont parvenus à reconstituer la séquence intégrale de chromosomes de bananier.

Discover
traitement des plaies diabétiques issu de peau et d’écailles de poissons

CERITD: Treating deep wounds with fish skin

CERITD and the South Île-de-France Medical Center are testing an innovative, natural fish-skin-based treatment for diabetic foot ulcers.

Discover
SYSFATE

Sysfate Team: A tool to digitize organs

Sysfate at Genoscope has combined image analysis and genomics to create MULTILAYER, a tool to digitize biological tissues and organs.

Discover
muscle fiber

Signs of myopathy detected before muscle formation

An I-Stem team has revealed very early embryonic molecular signs of Duchenne muscular dystrophy occurring upstream of muscle development itself

Discover
Neurons representation - Cells affected by CMT

Gene therapy for Charcot-Marie-Tooth disease makes headway

A gene therapy for Charcot-Marie-Tooth disease has been shown to be efficacious in an animal-model study cosigned by a research team created through Genopole support.

Discover
LAST - Makeup by Global Bioenergies

Global Bioenergies launches its makeup brand

Interview with Marc Delcourt, founder and CEO of Global Bioenergies, launches its makeup brand : LAST

Discover
NEB France celebrate 10 years @ Genopole

New England Biolabs France Celebrates 10 Years!

Its French affiliate arrived at Genopole in 2011 and to mark its 10th anniversary in France, the company invites you to participate in monthly activities to be held throughout 2021.

Discover
Visualization and quantification by MTBench technology of protein-protein interactions observed at Opera Phenix + in a cell line.

Seeing in high resolution at the Structural Biology Platform

With the support of Genopole & the University of Évry and to enrich its technological offer, the Structural Biology Platform has acquired the Opera Phenix Plus high content screening (HCS) system.

Discover
MSCA COFUND 2020 - ApogeeBio Laureate

COFUND-MSCA2020 : ApogeeBio chosen by the EC

Submitted by Genopole and its on-site partners, the ApogeeBio project for research grants has been selected by the European Commission for Marie Skłodowska-Curie Actions co-funding (MSCA-Cofund-2020).

Discover
Genhotel -  fibroblastes, cancer & Polyarthrite

Metabolic reprogramming involved in rheumatoid arthritis and cancer

The researchers from GenHotel (University of Évry-Paris Saclay, Genopole) have shed light on certain aspects common to rheumatoid arthritis and cancer.

Discover
AB Science L. Gros

Multiple sclerosis and COVID-19: promising results from AB Science

AB Science has been announcing a series of positive results concerning the efficacy of its product, masitinib, in such pathologies as multiple sclerosis, severe asthma resistant to oral steroids, COVID-19 and amyotrophic lateral sclerosis.

Discover
Placton - Tara Oceans

Bioinformatics and Tara Oceans

A team from the Genomics Metabolics Laboratory (Genoscope – CEA/CNRS/University of Évry) has developed a bioinformatics method for environmental genomics analyses able to identify species and associations of species.

Discover
Globules rouges - Avancées scientifiques

CRISPR-Cas9 for blood and metabolic diseases – Integrare

In an article published in Nature Communications, an Integrare team headed by Dr. Mario Amendola has described an innovative genome editing strategy aimed at modifying hematopoietic stem cells.

Discover
View all >
With the support from