Campuses

As France's leading biocluster, Genopole is an incubator for cutting-edge projects in biotechnology. Located in the city of Évry, just south of Paris, Genopole provides a unique environment for scientists and entrepreneurs seeking to advance research and innovation.

Discover >

Advantages

Genopole accompanies researchers, postdocs and start-up entrepreneurs through all the phases of their projects to ensure the best possible conditions for business development.

Discover >

Genopole’s citizens

Every day, at Genopole, researchers, entrepreneurs and students cross paths, share ideas and unite forces in a veritable melting pot for innovation.

Discover >

Highlights

Giving wings to research and empowering employment in our community are cornerstones of Genopole's mission. Catch up on recent scientific advances, the accomplishments of our biotech actors and the events that enliven the biocluster.

Discover >

Innovate with us

Discover >
Highlights

A tool to digitize organs


Sysfate at Genoscope has combined image analysis and genomics to create MULTILAYER, a tool to digitize biological tissues and organs.
SYSFATE SYSFATE

The Sysfate laboratory was created within the Genomics Metabolics unit at Genoscope through a Genopole Atige grant. The lab’s director, Marco Mendoza, and his team have developed MULTILAYER, a method for furnishing spatial digital images of activity in biological tissues. The team took inspiration from image analysis and admixed their expertise in “omics” (genomics, transcriptomics, etc.) to create the tool.

MULTILAYER thus reveals the functional structuration of an organ or tissue.

The method will be of particular interest for developing solutions in molecular diagnostics.

The function of a biological tissue or organ is determined by the activity of its constituent cells, or more precisely by the expression or non-expression of their genes.
Spatial transcriptomics* is a technique for analyzing the expression levels of a large group of genes simultaneously at the scale of a tissue or organ. From a histological section, the technique furnishes a two-dimensional image of gene expression therein, presented as points distributed evenly over the tissue. The functional map of the tissue can represent a thousand genes and several thousand positions, resulting together in millions of analyzable sequences. Such a quantity of data requires specific statistical and bioinformatics methods. To improve upon current methods, Marco Mendoza and his team at the Sysfate lab (Genoscope) have developed MULTILAYER and described its performance in an article published on 7 May 2021 in Cell Systems.

MULTILAYER analyzes a biological section and assigns to each spatial point in the tissue a measurement, called a gexel by the team for its analogousness with the pixels that make up a digital image. A gexel represents the expression of a thousand genes at a point in the tissue. Compared to conventional statistical methods, the novel nature of MULTILAYER is to be found in its analysis of gexels not as independent entities but as a continuity: adjacent gexels showing similar genetic expression profiles have weight in the analysis of any one gexel. Indeed, from a biological standpoint, contiguous cells should have a greater chance of a shared destiny and thus a shared genetic programming. The Sysfate team’s algorithm also mines known information centralized in databases, notably for gene co-expression, which can potentially indicate groups of genes associated with a given function.

MULTILAYER thus “digitizes” tissue into biologically pertinent substructures.

SysFate - Mapping a pancreas cut by Multilalayer
MULTILAYER has identified 6 functional cellular communities (6 colors) in the fabric, including strongly associated with tumor, cancer progression and ability to produce metastases.

In their article, the Sysfate researchers demonstrated MULTILAYER’s ability to identify functional zones from spatial transcriptomics data derived not only from heart tissue sections and a range of tumor tissues (below figure) but also from an entire mouse embryo, which the tool was able to stratify into regions corresponding perfectly to known anatomical structures (opposite figure).

MULTILAYER is freely available as an autonomous computer program: https://github.com/SysFate/MULTILAYER

 

An algorithm to obtain the functional cards of the organs


By uniting expertise in image analysis and in genomics, the Sysfate team was able to create a first version of an algorithm for the molecular analysis of tissues or organs that, when combined with spatial transcriptomics, may lead to functional maps of all of the organs in the human body. Such a feat would contribute to a better understanding of pathologies and the development of molecular diagnostics in the field of personalized medicine.

  • * Spatial transcriptomics

    Spatial transcriptomics produces spatial maps of gene expression within a tissue or organ. The method is built upon the fixation of groups of oligonucleotide mRNA (a product of gene expression) probes on a slide, upon which a tissue section will be placed.

    The mRNA are analyzed after separation, but a DNA barcode identifying the position of the trapped mRNA enables spatial reconstruction.

  • Reference

    Inferring biologically relevant molecular tissue substructures by agglomerative clustering of digitized spatial transcriptomes with multilayer. Cell Systems (2021)

    https://doi.org/10.1016/j.cels.2021.04.008

Article posted on 10 June 2021

Share
Highlights

Latest news


traitement des plaies diabétiques issu de peau et d’écailles de poissons

CERITD: Treating deep wounds with fish skin

CERITD and the South Île-de-France Medical Center are testing an innovative, natural fish-skin-based treatment for diabetic foot ulcers.

Discover
muscle fiber

Signs of myopathy detected before muscle formation

An I-Stem team has revealed very early embryonic molecular signs of Duchenne muscular dystrophy occurring upstream of muscle development itself

Discover
Neurons representation - Cells affected by CMT

Gene therapy for Charcot-Marie-Tooth disease makes headway

A gene therapy for Charcot-Marie-Tooth disease has been shown to be efficacious in an animal-model study cosigned by a research team created through Genopole support.

Discover
LAST - Makeup by Global Bioenergies

Global Bioenergies launches its makeup brand

Interview with Marc Delcourt, founder and CEO of Global Bioenergies, launches its makeup brand : LAST

Discover
NEB France celebrate 10 years @ Genopole

New England Biolabs France Celebrates 10 Years!

Its French affiliate arrived at Genopole in 2011 and to mark its 10th anniversary in France, the company invites you to participate in monthly activities to be held throughout 2021.

Discover
Visualization and quantification by MTBench technology of protein-protein interactions observed at Opera Phenix + in a cell line.

Seeing in high resolution at the Structural Biology Platform

With the support of Genopole & the University of Évry and to enrich its technological offer, the Structural Biology Platform has acquired the Opera Phenix Plus high content screening (HCS) system.

Discover
MSCA COFUND 2020 - ApogeeBio Laureate

COFUND-MSCA2020 : ApogeeBio chosen by the EC

Submitted by Genopole and its on-site partners, the ApogeeBio project for research grants has been selected by the European Commission for Marie Skłodowska-Curie Actions co-funding (MSCA-Cofund-2020).

Discover
Genhotel -  fibroblastes, cancer & Polyarthrite

Metabolic reprogramming involved in rheumatoid arthritis and cancer

The researchers from GenHotel (University of Évry-Paris Saclay, Genopole) have shed light on certain aspects common to rheumatoid arthritis and cancer.

Discover
AB Science L. Gros

Multiple sclerosis and COVID-19: promising results from AB Science

AB Science has been announcing a series of positive results concerning the efficacy of its product, masitinib, in such pathologies as multiple sclerosis, severe asthma resistant to oral steroids, COVID-19 and amyotrophic lateral sclerosis.

Discover
Placton - Tara Oceans

Bioinformatics and Tara Oceans

A team from the Genomics Metabolics Laboratory (Genoscope – CEA/CNRS/University of Évry) has developed a bioinformatics method for environmental genomics analyses able to identify species and associations of species.

Discover
Globules rouges - Avancées scientifiques

CRISPR-Cas9 for blood and metabolic diseases – Integrare

In an article published in Nature Communications, an Integrare team headed by Dr. Mario Amendola has described an innovative genome editing strategy aimed at modifying hematopoietic stem cells.

Discover
Généthon - Genopole's Laboratory

Treating more patients with gene therapies – Généthon

A Genethon team has successfully inhibited immune response to adeno-associated virus vectors, and in so doing, opened potential paths for treating more patients with gene therapies.

Discover
COVID-19 Disease Map

A single interactive map for all that is known on COVID-19

The objective for this latter is to build a sole referential comprising the totality of scientific knowledge on SARS-CoV-2/human-host interactions and thus contribute to the identification of therapeutic possibilities.

Discover
cellular membrane

Mapping membrane nanotubes – Lambe

A team from the Genopole-accredited Laboratory for Analysis and Modeling in Biology and the Environment (Lambe) has developed an experimental technique to study cell membrane nanotubes. These largely unknown structures play an essential role in cellular biomolecule transport.

Discover
Laboratory

Toward the industrialization of gene therapies -Polytheragene

Polytheragene is developing a polymer that will improve upon the current market standards for the production of viral particles for therapeutics. The polymer will be used by Genethon and Yposkesi to enhance the bioproduction of gene therapy vectors.

Discover
Jean Weissenbach

Jean Weissenbach: a portrait

Jean Weissenbach, a pioneer in France for the exploration of the human genome and a scientific icon at Genopole, talks about his career in an interview published 18 March 2020 in CNRS News.

Discover
cellular membrane

A nanopore to identify amino acids – Lambe

A team from the Laboratory for Analysis and Modeling in Biology and the Environment (Lambe – University of Évry/University of Cergy-Pontoise/CNRS) used a natural aerolysin nanopore to successfully identify 13 of the 20 amino acids that make up proteins.

Discover
Genopole - European projects

Green light from Europe for the Genopole-coordinated project GEN.ERA

Le projet européen GEN.ERA*, coordonné par Genopole, est sélectionné par la Commission européenne. Il vise à renforcer par une coopération entre clusters, l’internationalisation d’entreprises du secteur de la génomique au-delà du continent européen.

Discover
actus

New accomplishment in gene therapies

A clinical trial for a gene therapy to treat a severe immunodeficiency has provided highly promising initial results.

Discover
View all >
With the support from