Campuses

As France's leading biocluster, Genopole is an incubator for cutting-edge projects in biotechnology. Located in the city of Évry, just south of Paris, Genopole provides a unique environment for scientists and entrepreneurs seeking to advance research and innovation.

Discover >

Advantages

Genopole accompanies researchers, postdocs and start-up entrepreneurs through all the phases of their projects to ensure the best possible conditions for business development.

Discover >

Genopole’s citizens

Every day, at Genopole, researchers, entrepreneurs and students cross paths, share ideas and unite forces in a veritable melting pot for innovation.

Discover >

Highlights

Giving wings to research and empowering employment in our community are cornerstones of Genopole's mission. Catch up on recent scientific advances, the accomplishments of our biotech actors and the events that enliven the biocluster.

Discover >

Innovate with us

Discover >
Highlights

A tool to digitize organs


Sysfate at Genoscope has combined image analysis and genomics to create MULTILAYER, a tool to digitize biological tissues and organs.
SYSFATE SYSFATE

The Sysfate laboratory was created within the Genomics Metabolics unit at Genoscope through a Genopole Atige grant. The lab’s director, Marco Mendoza, and his team have developed MULTILAYER, a method for furnishing spatial digital images of activity in biological tissues. The team took inspiration from image analysis and admixed their expertise in “omics” (genomics, transcriptomics, etc.) to create the tool.

MULTILAYER thus reveals the functional structuration of an organ or tissue.

The method will be of particular interest for developing solutions in molecular diagnostics.

The function of a biological tissue or organ is determined by the activity of its constituent cells, or more precisely by the expression or non-expression of their genes.
Spatial transcriptomics* is a technique for analyzing the expression levels of a large group of genes simultaneously at the scale of a tissue or organ. From a histological section, the technique furnishes a two-dimensional image of gene expression therein, presented as points distributed evenly over the tissue. The functional map of the tissue can represent a thousand genes and several thousand positions, resulting together in millions of analyzable sequences. Such a quantity of data requires specific statistical and bioinformatics methods. To improve upon current methods, Marco Mendoza and his team at the Sysfate lab (Genoscope) have developed MULTILAYER and described its performance in an article published on 7 May 2021 in Cell Systems.

MULTILAYER analyzes a biological section and assigns to each spatial point in the tissue a measurement, called a gexel by the team for its analogousness with the pixels that make up a digital image. A gexel represents the expression of a thousand genes at a point in the tissue. Compared to conventional statistical methods, the novel nature of MULTILAYER is to be found in its analysis of gexels not as independent entities but as a continuity: adjacent gexels showing similar genetic expression profiles have weight in the analysis of any one gexel. Indeed, from a biological standpoint, contiguous cells should have a greater chance of a shared destiny and thus a shared genetic programming. The Sysfate team’s algorithm also mines known information centralized in databases, notably for gene co-expression, which can potentially indicate groups of genes associated with a given function.

MULTILAYER thus “digitizes” tissue into biologically pertinent substructures.

SysFate - Mapping a pancreas cut by Multilalayer
MULTILAYER has identified 6 functional cellular communities (6 colors) in the fabric, including strongly associated with tumor, cancer progression and ability to produce metastases.

In their article, the Sysfate researchers demonstrated MULTILAYER’s ability to identify functional zones from spatial transcriptomics data derived not only from heart tissue sections and a range of tumor tissues (below figure) but also from an entire mouse embryo, which the tool was able to stratify into regions corresponding perfectly to known anatomical structures (opposite figure).

MULTILAYER is freely available as an autonomous computer program: https://github.com/SysFate/MULTILAYER

 

An algorithm to obtain the functional cards of the organs


By uniting expertise in image analysis and in genomics, the Sysfate team was able to create a first version of an algorithm for the molecular analysis of tissues or organs that, when combined with spatial transcriptomics, may lead to functional maps of all of the organs in the human body. Such a feat would contribute to a better understanding of pathologies and the development of molecular diagnostics in the field of personalized medicine.

  • * Spatial transcriptomics

    Spatial transcriptomics produces spatial maps of gene expression within a tissue or organ. The method is built upon the fixation of groups of oligonucleotide mRNA (a product of gene expression) probes on a slide, upon which a tissue section will be placed.

    The mRNA are analyzed after separation, but a DNA barcode identifying the position of the trapped mRNA enables spatial reconstruction.

  • Reference

    Inferring biologically relevant molecular tissue substructures by agglomerative clustering of digitized spatial transcriptomes with multilayer. Cell Systems (2021)

    https://doi.org/10.1016/j.cels.2021.04.008

Article posted on 10 June 2021

Share
Highlights

Latest news


L'équipe de la Biofonderie de Paris dont Genopole est membre au GBA 2024 en Corée

Genopole’s actions for synthetic biology and the bioeconomy

Genopole strengthens its key roles in synthetic biology, biomanufacturing and the bioeconomy, as demonstrates its notable actions carried out this fall on several national and international scenes.

Discover
Mission Bio Japan 2024 : Abolis Biotechnologies et Ispiron, accompagnées par Laurence Lacroix-Orio, directrice du Pôle Croissance et Prospection de Genopole, Paul Caroën, Program Manager et Alexis Biton, coordinateur des affaires internationales

Genopole’s mission to Japan – a country looking to lead in bioindustry

Genopole's mission to Japan was a great opportunity to extend its international network of investors and corporations in Eastern Asia. It is opening itself to partnerships with foreign start-ups to strengthen the commercial deployment of innovative breakthroughs for regenerative medicine, gene editing and artificial intelligence.

Discover
Les projets immobilier du biocluster Genopole - Evry

Real estate at Genopole: supporting growth through a strategic offer for workspace

With more than 41,000 m² of office and lab premises & more than seven hectares of available land tracts, the real estate offer of the Genopole biocluster is actively laying the groundwork for future developments with projects such as GenoLife and Cube.

Discover
Généthon - Vers une nouvelle génération de vecteurs viraux AAV pour la thérapie généique

The road toward a new generation of gene therapy vectors

Using an AI approach, Genethon has conceived a next-generation vector improving the specificity and safety of gene therapies for muscular dystrophies.

Discover

Protopia: Genopole steps into a new era of prototyping

Protopia, a new, advanced prototyping platform aimed at transforming R&D in biotech sectors, will be a resounding next-step in support for innovative biotech start-ups and businesses. It aims to accelerate project upscaling and preindustrialization while also empowering interdisciplinary partnerships.

Discover
Equipe du laboratoire LBEPS

LBEPS : Athletic performance is also forged in the laboratory

Research performed at LBEPS has resulted in three publications illustrating how a scientific approach to exercise can optimize athletic performance and health.

Discover
Laboratoire de R&D - Abolis - campus Genopole

Abolis raises €35 million from an international consortium

Abolis has reached another milestone in its upscaling objectives. Convinced by the pertinence and robustness of its technology, an international consortium of industrials and funders will provide €35 million to the company.

Discover
Hélène Virasith, Program manager à Genopole, a accompagné trois startups génopolitaines Nutropy, AuraLIP et Onima au salon Futur Food Tech de Chicago - Juin 2024

Genopole at the Future FoodTech 2024 – Chicago

Genopole was in Chicago on June 17 and 18 for the Future Food Tech conference. Genopole® accompanied three of the biocluster's companies developing more sustainable food: Nutropy, AuraLIP and Onima. This was an opportunity for them to get noticed by major US groups and investors, and to gain an insight into North American market trends.

Discover
La délégation Genopole à BIO USA 2024

Genopole at BIO International 2024

The Genopole team at the BIO International Convention in San Diego pursued three main objectives: promote Genopole accompaniment to attract new talent, highlight biocluster companies and gather information on market and regulatory tendencies.

Discover
ACS Publication - Cover May 2024 - qui contient la publication du Lambe sur les nanopores

Lambe: A new milestone on the path to nanopore-based precision diagnostics

June 2024- Lambe has demonstrated the ability of an aerolysin nanopore to discriminate enantiomeric forms of peptide biomarkers useful for medical diagnostics.

Discover
Visite de la délégation

Genopole and the Netherlands: together to accelerate the development of alternative proteins

Genopole welcomed a Dutch delegation of close to 20 company representatives and alternative proteins researchers. The objective of the visit was to explore possibilities for research and business partnerships aimed at the development of new foods capable of meeting the future's nutritional, environmental, health, business and gustatory demands.

Discover
Adnam Imeri et Jennifer Allouche, lauréats du programme financier ATIGE, créent leur équipe de recherche à Genopole respectivement en génomique et en biothérapies.

Two new research teams working on important subjects in genomics and innovative biotherapies

With its two new Atige laureates, Adnam Imeri and Jennifer Allouche, lauréats du programme financier ATIGE, create their research teams working on important subjects in genomics and innovative biotherapies.

Discover
le programme national d’envergure PEPR Biothérapies et Bioproduction,  co-piloté par Cécile Martinat, est piloté par le CEA et l'Inserm

Four biocluster labs involved in the PEPR national program

Launched in late 2023 as part of the France 2030 plan, the PEPR "Biotherapies and Biomanufacturing" program seeks to place France as the spearhead of the key sector of biodrugs. Three of the program's priority projects are headed by Genopole laboratories.

Discover
©Lionel Antoni - Plateforme d'irradiation expérimentale du LRGK - Plateforme génopolitaine mutualisée avec les acteurs de la communauté scientifique francilienne

The Experimental Irradiation Platform to serve the Île-de-France scientific community

Genopole is making available to the Île-de-France scientific community an Experimental Irradiation Platform equipped with a state of the art generator

Discover
Laina Freyer directrice scientifique, Felome

Felome Launches the Commercialization of Genetic Analyses for Companion Cats

Felome will begin the commercialization of a service offering genetic analyses for companion cats, to reveal their predispositions to over 50 diseases, identify their main physical traits, and their similarities with 14 types of breeds.

Discover
Lauréats de la promo 3 du programme Gene.iO - Genopole

Three Gene.iO whiz kids rewarded for their innovations

Three Gene.iO whiz kids, Alga Biologics, Fungu'it and Alt Biotech, rewarded for their innovations. Alga Biologics was among the 35 start-ups included in the French Blue Tech Index. Fungu'it and Alt Biotech, were selected to participate in 212 Founders, a start-up accompaniment and financing program by CDG Invest.

Discover
l'équipe iGEM 2023 Evry Paris-Saclay - Médaille d'or et p

A prize and gold for the 2023 Évry Paris-Saclay iGEM team

The international synthetic biology competition iGEM celebrated its 20th anniversary. From across the globe, the event drew more than 7,000 students in 400 teams from 66 countries. Genopole was there, among other actors in synthetic biology, to present the biocluster's advantages at its stand, and support the 17 students of the Évry Paris-Saclay team and their outstanding project, OptoGenEYEsis.

Discover
Genopole en mission exploratoire au Japon et en Corée du sud - octobre 2023

An exploratory mission to Japan and South Korea for Genopole

Genopole sent a team to Japan and South Korea to present itself and several of its accompanied businesses to major pharmaceutical corporations, investors and Asian bioclusters curious about biotechnological innovations and open to international partnerships.

Discover
Ibisc - Genopole's Laboratory

IBISC – Structure prediction for RNA complexes

passes a milestone in structure prediction for RNA complexes, key players in cell biology.

Discover
IBISC: A first predictive tool for the emerging field of bifunctional RNA

IBISC: A first predictive tool for the emerging field of bifunctional RNA

The IBISC laboratory has developed IRSOM2, an unprecedented bioinformatics tool for the prediction of bifunctional RNA, a relatively recently discovered class of RNA showing both an ability to code for proteins and an ability to perform biological roles.

Discover
View all >
With the support from
Région île de France