Campuses

As France's leading biocluster, Genopole is an incubator for cutting-edge projects in biotechnology. Located in the city of Évry, just south of Paris, Genopole provides a unique environment for scientists and entrepreneurs seeking to advance research and innovation.

Discover >

Advantages

Genopole accompanies researchers, postdocs and start-up entrepreneurs through all the phases of their projects to ensure the best possible conditions for business development.

Discover >

Genopole’s citizens

Every day, at Genopole, researchers, entrepreneurs and students cross paths, share ideas and unite forces in a veritable melting pot for innovation.

Discover >

Highlights

Giving wings to research and empowering employment in our community are cornerstones of Genopole's mission. Catch up on recent scientific advances, the accomplishments of our biotech actors and the events that enliven the biocluster.

Discover >

Innovate with us

Discover >
Highlights

Bioinformatics and Tara Oceans


A team from the Genomics Metabolics Laboratory (Genoscope – CEA/CNRS/University of Évry) has developed a bioinformatics method for environmental genomics analyses able to identify species and associations of species.
Article in Genome Research >
© A.Deniaud - Tara Expeditions © A.Deniaud - Tara Expeditions

For the data from the Tara Oceans expedition, the method provides access to the biological functions and ecological roles of oceanic eukaryotic plankton. The team’s work was published in Genome Research.

Metagenomics enables the single-analysis study of the collective DNA of all the microorganisms present in a given environment, such as a body of water, an area of soil, the human body, etc.
Using it, the Tara Oceans expedition was able to analyze the community of organisms present in each of their seawater samples and thus discover the complex universe of plankton. Therein, the Tara Oceans teams revealed a rich planktonic world comprising millions of genes, the functions of which are being progressively brought to light.

However, the global analysis of an environment’s DNA in this manner makes it difficult to identify and study the individual species present there, notably for large, complex genomes like those of eukaryotes.

Identifying the genes of, or those associated with, individual organisms

Researchers at the Genomics Metabolics laboratory developed a bioinformatics method that crosses metagenomic and metatranscriptomic (the collection of transcripted genes, i.e., those veritably expressed by the organism community) data.
With the method, researchers were able to identify among the pooled genes those associated with a same organism or those associated with organisms that live in close association with one another (e.g., parasites/hosts, symbiotic organisms). The method builds upon the quantification of the abundance of genes within samples. For a given species, any one of these genes will vary in abundance in an equivalent manner between samples.

By studying the gene abundancy profile, it is possible to assemble those present in a same quantity and thus identify the totality of genes belonging to a given organism or an association of organisms.

The researchers applied the bioinformatics method to a collection of 37 million genes identified from 365 Tara Oceans samples, which resulted in the identification of 900 groups of genes representing partial or complete organism transcriptomes. Having gained access to these organisms, some of which have not yet been described, researchers can now study their biological and ecological roles. The teams intend to look at the roles of these organisms in major biogeochemical cycles, those of sulfur, nitrogen and phosphate for example.

Toward the biological exploration of data

For example, they have already discovered organisms, particularly Chloropicon genus microalgae, that produce a key enzyme in the sulfur cycle. That enzyme metabolizes dimethylsulfoniopropionate (DMSP), one product of which becomes an atmospheric compound involved in cloud formation. Other ocean–atmosphere–climate interactions will soon be explored. Furthermore, a previously-undescribed symbiotic relationship between a nitrogen-fixing cyanobacterium and a unicellular alga was also brought to light by the bioinformatics method.

Indeed, thanks to this approach, new exploratory frontiers have been opened for the Tara Oceans project’s vast store of data.

  • Reference

    Transcriptome reconstruction and functional analysis of eukaryotic marine plankton communities via high-throughput metagenomics and metatranscriptomics. Genome Research (2020). doi : 10.1101/gr.253070.119

Article posted on 8 September 2020

Share
Highlights

The lastest news


©Lionel Antoni - Plateforme d'irradiation expérimentale du LRGK - Plateforme génopolitaine mutualisée avec les acteurs de la communauté scientifique francilienne

The Experimental Irradiation Platform to serve the Île-de-France scientific community

Genopole is making available to the Île-de-France scientific community an Experimental Irradiation Platform equipped with a state of the art generator

Discover
Laina Freyer directrice scientifique, Felome

Felome Launches the Commercialization of Genetic Analyses for Companion Cats

Felome will begin the commercialization of a service offering genetic analyses for companion cats, to reveal their predispositions to over 50 diseases, identify their main physical traits, and their similarities with 14 types of breeds.

Discover
Lauréats de la promo 3 du programme Gene.iO - Genopole

Three Gene.iO whiz kids rewarded for their innovations

Three Gene.iO whiz kids, Alga Biologics, Fungu'it and Alt Biotech, rewarded for their innovations. Alga Biologics was among the 35 start-ups included in the French Blue Tech Index. Fungu'it and Alt Biotech, were selected to participate in 212 Founders, a start-up accompaniment and financing program by CDG Invest.

Discover
l'équipe iGEM 2023 Evry Paris-Saclay - Médaille d'or et p

A prize and gold for the 2023 Évry Paris-Saclay iGEM team

The international synthetic biology competition iGEM celebrated its 20th anniversary. From across the globe, the event drew more than 7,000 students in 400 teams from 66 countries. Genopole was there, among other actors in synthetic biology, to present the biocluster's advantages at its stand, and support the 17 students of the Évry Paris-Saclay team and their outstanding project, OptoGenEYEsis.

Discover
Genopole en mission exploratoire au Japon et en Corée du sud - octobre 2023

An exploratory mission to Japan and South Korea for Genopole

Genopole sent a team to Japan and South Korea to present itself and several of its accompanied businesses to major pharmaceutical corporations, investors and Asian bioclusters curious about biotechnological innovations and open to international partnerships.

Discover
Ibisc - Genopole's Laboratory

IBISC – Structure prediction for RNA complexes

passes a milestone in structure prediction for RNA complexes, key players in cell biology.

Discover
IBISC: A first predictive tool for the emerging field of bifunctional RNA

IBISC: A first predictive tool for the emerging field of bifunctional RNA

The IBISC laboratory has developed IRSOM2, an unprecedented bioinformatics tool for the prediction of bifunctional RNA, a relatively recently discovered class of RNA showing both an ability to code for proteins and an ability to perform biological roles.

Discover
Integrating informatics, structural biology and in vivo exploration for the discovery of new medicines

SABNP & Synsight: discovery of new medicines

SABNP and Synsight have validated an integrated, drug discovery approach uniting informatics, structural biology and in vivo exploration.

Discover
Alexis Biton and Paul Carouen - Genopole - visiting the Research Triangle Park (USA) accompanied by 3 Genopole's companies

Genopole strengthens its ties with the Research Triangle Park

From Monday March 20 to Thursday March 24, Genopole's Partnership & Business Development team visited the Research Triangle Park biopark in North Carolina to strengthen scientific and industrial collaborations.

Discover
Lambe - Genopole's laboratory

Lambe: Detecting coagulation biomarkers with a natural nanopore

The Lambe laboratory showed proof of concept for a coagulation biomarker detection technology based on a natural nanopore.

Discover
Andrew Tolonen's team within the unit of Genomics Metabolics (Genoscope - CEA)

Genoscope: Biomanufacturing with bacteria

A team led by Andrew Tolonen has developed a method to optimize the genetic engineering of Clostridium genus bacteria for biotech applications

Discover
l’équipe « Dystrophies musculaires progressives » du laboratoire Généthon

Shining light on a key mechanism of Duchenne muscular dystrophy

A Genethon team has provided new insights on a complex genetic mechanism involved in mitochondrial dysfunction in Duchenne muscular dystrophy.

Discover
A trio of genome sites associated with arterial hypertension

A trio of genome sites associated with arterial hypertension

Researchers from the CNRGH and PARCC have identified three loci associated with an increased risk of developing primary hyperaldosteronism, a leading cause of arterial hypertension.

Discover
Genoscope - CNS - Genopole's laboratory

The story of the domestic donkey told by its genome

Genoscope participated in the sequencing of the DNA of 250 donkeys in a study revealing the domestication of this species highly contributive to human activities to this day.

Discover
Galaxy-SynBioCAD: accelerating the arrival of green chemistry

Galaxy-SynBioCAD: accelerating the arrival of green chemistry

Conceived by the Genomics Metabolics Unit, Galaxy-SynBioCAD accelerates biological design and engineering for the production of next generation chemical compounds.

Discover
Equipe Sysfate de l'UMR 8030 - projet T-Fitness

T-FITNESS: Toward empowering CAR-T therapies for solid tumors

The Genopole team SysFate is participating in the international project T-FITNESS. The project, selected by the European Innovation Council, aims to resolve the difficulty of T-cell exhaustion in CAR-T therapies for solid tumors.

Discover
Ynsect & Genoscope : Vers la sélection génomique des insectes d’élevage

Toward the genomic selection of farmed insects

France is historically a land of livestock farming. Cows for meat or milk, sheep, pigs, fowl of all sorts; France rears them all. And insects! With its genomic selection project for Tenebrio molitor beetles, the Genopole company Ÿnsect and its biocluster partner, the sequencing center Genoscope, are making France a pioneer in insect farming.

Discover
Couverture de la revue Cell Genomics - Le plancton

A feat in the study of planktonic life

A Genoscope research team was part of a pioneering study in environmental genomics. The researchers were able to at least partially reconstitute the genomes of close to 700 eukaryote species.

Discover
Logos Istem & Généthon

A two-drug combination to treat limb-girdle muscular dystrophies and cystic fibrosis

The I-Stem and Genethon laboratories have identified a promising drug combination in the setting of three genetic diseases sharing similar molecular mechanisms.

Discover
IBISC - IA qui diagnostique et explique grâce à un réseau de neurones

An artificial intelligence to diagnose and explain

The IBISC laboratory has conceived an architecturally-innovative neural network able to provide not only a diagnostic prediction but also a biological explanation.

Discover
View all >
With the support from
Région île de France